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Stability of classical chaotic motion under a system’s perturbations
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We study in detail the time behavior of classical fidelity for chaotic systems. We show, in particular, that the
asymptotic decay, depending on system dynamical properties, can be either exponential, with a rate determined
by the gap in the discretized Perron-Frobenius operator, or algebraic, with the same power as for correlation
functions decay. Therefore the decay of fidelity is strictly connected to correlations decay.
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As it is known, the exponential separation of orbits sta
ing from slightly different initial conditions has been asso
ated with classical chaos. It has been noticed that the s
tion in quantum mechanics is drastically different. Indeed
scalar product of two stateŝc1uc2& is time independent
This has led to the introduction of fidelity as a measure of
stability of quantum motion@1#. More precisely one consid
ers the overlap of two states which, starting from the sa
initial conditions, evolve under two slightly different Hami
toniansH0 and He5H01eV. The fidelity is then given by
f (t)5u^cuexp(iHet/\)exp(2iH0t/\)uc&u2. The quantity f (t)
can be seen as a measure of the so-called Loschmidt ec
stateuc& evolves for a timet under the HamiltonianH0, then
the motion is reversed and evolves back for the same timt
under the HamiltonianHe and the overlap with the initia
stateuc& is considered.

However, we would like to stress that, in principle, su
difference between classical and quantum mechanics act
does not exist. The Liouville equation, which describes cl
sical evolution, is unitary and reversible as the Schro¨dinger
equation. However, as stressed in several occasions~see,
e.g., Ref.@2#!, there exist time scales up to which quantu
motion can share the properties of classical chaotic mo
including local exponential instability. Due to the existen
of such time scales, what may be different, and indeed i
is the degree of the stability of dynamical motion. Indeed,
clearly illustrated in the analysis of Loschmidt echo in R
@3#, quantum motion turns out to be more stable than
classical motion.

The growing interest in quantum computers has attrac
recent interest in this quantity as a measure of the stabilit
quantum computation in the presence of hardware imper
tions or noisy gate operations. Confining ourselves to cla
cally chaotic systems, the emerging picture which res
from analytical and numerical investigations@4–12# is that
both exponential and Gaussian decays are present in the
behavior of fidelity. The strength of the perturbation det
mines which of the two regimes prevails. The decay rate
the exponential regime appears to be dominated either by
classical Lyapunov exponent or, according to the Fe
golden rule, by the spreading width of the local density
states.
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In addition, at least for short times, the decaying behav
depends on the initial state~coherent state, mixture, etc.!.
While it can be true that, for practical purposes, the sh
time behavior of fidelity may be the most interesting one
is also true, without any doubt, that in order to have a cl
theoretical understanding and identify a possible unive
type of quantum decay one needs to consider the asymp
behavior of fidelity.

There arises the problem of understanding the co
sponding classical decay of fidelity and later on inquiri
about the time scales at which quantum decay mimics
classical one. In the present paper, we concentrate our a
tion on the classical behavior.

What do we know about the decay of classical fidelity f
chaotic systems? What is the relation with correlation fu
tions? Can we derive the decay of fidelity from the behav
of correlations or is fidelity a completely independent fun
tion? In a recent paper@12# it has been found numerically
that, after an initial transient, classical fidelity decays exp
nentially and the rate is given by the Lyapunov exponent~see
also Refs.@8,13#!. This is also in agreement with previou
papers @4–6# indicating that quantum fidelity, for strong
enough quantum perturbation~which, for a fixed classical
perturbation strength, corresponds to semiclassical regi!,
decays exponentially with a rate given by the the Lyapun
exponent of the corresponding classical system. On the o
hand, we know that the decay of correlation functions is
ruled by the Lyapunov exponent. In the first place, there
the general phenomenon of long time tails which mea
power law decay. In addition, for the special cases in wh
one can prove exponential decay, the rate is determined
the gap in the discretized Perron-Frobenius operator and
by the Lyapunov exponent.

In this paper, we show that the asymptotic decay of cl
sical fidelity for chaotic systems is not related to t
Lyapunov exponent: Similarly to correlation functions, th
decay can be either exponential or power law. In the fi
case, the decay rate is determined by the gap in the
cretized Perron-Frobenius operator, and in the latter case
power law has the same exponent as for correlation fu
tions.

The classical fidelityf (t) is defined as follows:
©2003 The American Physical Society02-1
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f ~ t !5E
V

dxre~x,t !r0~x,t !, ~1!

where the integral is extended over the phase space, an

r0~x,t !5U0
t r~x,0!, re~x,t !5Ue

t r~x,0! ~2!

give the evolution aftert steps of the initial densityr(x,0)
@assumed to be square normalized, i.e.,*dxr2(x,0)51] as
determined by thetth iteration of the Perron-Frobenius per
tors U0 andUe , corresponding to the HamiltoniansH0 and
He , respectively. The above definition can be shown to c
respond to the classical limit of quantum fidelity@8,10#. In
the ideal case of perfect echo (e50), the fidelity does not
decay,f (t)51. However, due to chaotic dynamics, whene
Þ0 the classical fidelity decay sets in after a time scale

tn;
1

l
lnS n

e D , ~3!

required to amplify the perturbation up to the sizen of the
initial distribution, withl the Lyapunov exponent. Thus, fo
t@tn the recovery of initial distribution via the imperfec
time-reversal procedure fails, and the fidelity decay is de
mined by the decay of correlations for a system that evol
forward in time according to the HamiltoniansH0 ~up to
time t) andHe ~from time t to time 2t). This is conceptually
similar to the ‘‘practical’’ irreversibility of chaotic dynamics
due to the exponential instability, any amount of numeri
error in computer simulations rapidly effaces the memory
the initial distribution @3#. In the present case, the coar
graining which leads to irreversibility is not due to roundo
errors but due to a perturbation in the Hamiltonian.

In the following, we illustrate this general phenomenon
standard models of classical chaos, characterized by unif
exponential instability~the sawtooth map!, marginal stability
~the stadium billard!, or mixed phase space dynamics~the
kicked rotator!.

The sawtooth map is defined by

p̄5p1F0~u!, ū5u1 p̄, ~4!

where (p,u) are conjugated action-angle variables,F0
5K0(u2p), and the overbars denote the variables after
map iteration. We consider this map on the torus 0<u
,2p, 2pL<p,pL, whereL is an integer. ForK0.0 the
motion is completely chaotic and diffusive, with th
Lyapunov exponent given byl5 ln†(21K01@(21K0)2

24#1/2)/2‡. For K0.1 one can estimate the diffusion coe
ficient D by means of the random phase approximation,
taining D'(p2/3)K0

2. In order to compute fidelity~1!, we
choose to perturb the kicking strengthK5K01e, with e
!K0. In practice, we follow the evolution of 108 trajectories,
which are uniformly distributed inside a given phase sp
region of areaA0 at time t50. The fidelity f (t) is given by
the percentage of trajectories that return back to that reg
after t iterations of map~4! forward, followed by the back-
ward evolution, now with the perturbed strengthK, in the
same time intervalt. In order to study the approach to equ
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librium for fidelity, we consider the quantityg(t)5@ f (t)
2 f (`)#/@ f (0)2 f (`)#; in this wayg(t) drops from 1 to 0
whent goes from 0 tò . We note thatf (0)51, while for a
chaotic systemf (`) is given by the ratioA0 /Ac , with Ac
the area of the chaotic component to which the initial dis
bution belongs.

The behavior ofg(t) is shown in Fig. 1, forK05(A5
11)/2 and differentL values. One can see that only the sh
time decay is determined by the Lyapunov exponent. It ta
place for tn,t,te , with tn defined in Eq. ~3! and te
;(1/l)ln(2p/e) time scale required to amplify the effect o
the Hamiltonian perturbation up to the maximum extens
in the angleu. The Lyapunov regime is followed by a powe
law decay@12# }1/ADt until the diffusion timetD;L2/D
and then the asymptotic relaxation to equilibrium takes pl
exponentially, with a decay rateg ~shown in Fig. 2!, which,
as discussed below, is ruled not by the Lyapunov expon
but by the largest Ruelle-Pollicott resonance@14#. In particu-
lar, it is e independent.

We determine numerically these resonances for the s
tooth map using the following method@15,16#.

~i! The phase space torus (0<u,2p, 2pL<p,pL) is
divided intoN3NL square cells.

~ii ! The transition matrix elements between cells are
termined numerically by iterating for one map step the ph
space distributions given by the characteristic functions
each cell: in this way we build a finite dimensional appro
mation of the one-period evolution operatorU0.

~iii ! This truncated evolution matrixU0
(N) ~of size LN2

3LN2) is diagonalized: it is no longer unitary, and its eige
valueszi

(N) are inside the unit circle in the complex plane~an
example is shown in Fig. 3!. The nonunitarity of the coarse
grained evolution is due to the fact that the transfer of pr

FIG. 1. Decay of the fidelityg(t) for the sawtooth map with the
parametersK05(A511)/2 ande51023 for different values ofL
51,3,5,7,10,20,̀ from the fastest to the slowest decaying curv
respectively. The initial phase space density is chosen as the
acteristic function on the support given by the (u,p)P@0,2p)
@2p/100,p/100#. Note that between the Lyapunov decay and t
exponential asymptotic decay there is a}1/At decay, as expected
from the diffusive behavior. Inset: magnification of the same p
for short times, with the corresponding Lyapunov decay indica
as a thick dashed line.
2-2
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ability to finer scale structures in the phase space is cu
and this results in an effective dissipation@15#.

~iv! Resonances correspond to ‘‘frozen’’ nonunimodu
eigenvalues, namely,zi

(N)→zi when N→`, with uzi u,1.
Convergence of eigenvalues to values inside the unit cir
comes from the asymptotic self-similarity of chaotic dyna
ics @15#.

As it is known, the asymptotic (t→`) relaxation of cor-
relations is determined by the resonance with largest mo
lus, uz̃u5maxiuziu,1, giving a decay rateg05 lnuz̃u. In Fig. 2,
we illustrate the good agreement between the asymptotic
cay rate of fidelity~extracted from the data of Fig. 1! and the
decay rate as predicted by the gap in the discretized Per

FIG. 2. Asymptotic exponential decay rates of fidelity for t
sawtooth map@K05(A511)/2, e51023# as a function ofL. The
rates are extracted by fitting the tails of the fidelity decay in Fig
~triangles! and from the discretized Perron-Frobenius opera
~circles!. The line denotes the}1/L2 behavior of the decay rates
predicted by the Fokker-Planck equation, which describes the c
sical motion in the diffusive regime.

FIG. 3. Spectrum of the discretized Perron-Frobenius oper
for the sawtooth map with parametersK05(A511)/2, L57,
and discretizationN520. The asymptotic decay of fidelity i
determined by the largest modulus eigenvalue apart from
eigenvalue 1.
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Frobenius spectrum. It should be stressed that, since fid
involves forward and backward evolutions, the fidelity dec
at time t has to be compared with the correlations decay
time 2t. For this reason in Fig. 2 the circles correspond
g52g0.

We would like to stress that the same qualitative behav
of Fig. 1 is obtained in the presence of stochastic noise, e
the backward evolution is driven by a kicking streng
K(t)5K01e(t), with $e(t)% t51,2, . . . uniformly and ran-

FIG. 4. Power law decay of fidelity for the stadium billiard wit
radius R51 and the length of the straight segmentsd052 ~the
perturbed stadium hasd5d01e, with e5231023). The initial
phase space density was chosen to be a direct product of a ch
teristic function on a circle in configuration space, the center
which was at~0.5,0.25! as measured from the center of the billia
and its radius was 0.1, while for momenta thed(upu21) distribu-
tion was used. The dashed line has slope21.

FIG. 5. The decay of fidelity for the kicked rotator withK0

52.5, L51, ande51023 ~full curve!. The support of the initial
~characteristic! density is inside the chaotic component, wi
(u,p)P@0,0.2#@0,0.2#. The dotted curve represents the exponen
decay at a rate given by the Lyapunov exponentl'0.534. The
dashed line has slope20.55. The dot-dashed curve gives the co
relation decayD(2t), for the same initial density and for twice th
time t. It is clearly seen that, asymptotically, fidelity and correl
tions have the same power law decay}t20.55.
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domly distributed inside the interval@2e,e#. In particular,
we observed the initial Lyapunov decay and the asympt
exponential relaxation with the same rateg. This means that
the effect of a noisy environment on the decay of fidelity
a classical chaotic system is similar to that of a generic st
Hamiltonian perturbation.

Further confirmation for the validity of the above illus
trated scenario has been obtained by analyzing system
which the asymptotic decay of correlations is algebraic. T
happens in the following cases.

~i! When the system possesses marginally stable orbit
typical example is the stadium billiard in which, as it
known @17#, correlations decay as 1/t.

~ii ! When there is mixed phase space@18#: A typical ex-
ample is the kicked rotator model@described by Eq.~4! with
F05K0 sinu].

Since in the long time limit the fidelity decay at timet is
still related to the decay of correlations at time 2t, in the case
of power law decay of correlations ast2a, we expect a
power law decay of fidelity with the same exponenta. This
is indeed confirmed by our numerical results. In Fig. 4 it
shown that, for the stadium billiard, fidelity decays asym
totically }1/t, as expected. In Fig. 5, we compare the fidel
decay~at time t) and the correlations decay~at time 2t) for
ky

s.

R

ev

05520
ic

r
ic

in
is

A

-

the kicked rotator with kicking parameterK052.5, for which
the phase space contains chaotic components and stab
lands. The correlator is given by D(t)5@C(t)
2C(`)#/@C(0)2C(`)#, with C(t)5*Vdxr0(x,t)r(x,0).
It is seen that, after an initial Lyapunov decay, fidelity a
proaches the same asymptotic power law decay of corr
tions @19#.

In summary, we have shown that in chaotic systems
asymptotic decay of classical fidelity, which describes
structural stability of motion under system’s perturbations
analogous to the asymptotic decay of correlation functio
This asymptotic decay can be either exponential or algebr
depending on the dynamical properties of the system. In
instance, it is not related to the local exponential instabi
ruled by the Lyapunov exponent and it ise independent. It
would be interesting to understand what are the implicati
of these findings for the decay of quantum fidelity.
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